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Abstract

This paper presents a preliminary assessment and qualitative analysis on fracture criterion and crack growth in metal
powder compact during the cold compaction process. Based on the fracture criterion of granular materials in compression,
a displacement based finite element model has been developed to analyse fracture initiation and crack growth in metal
powder compact. Approximate estimation of fracture toughness variation with relative density is established in order to
provide the fracture parameter as compaction proceed. A single crack initiated from the boundary of a multi-level com-
ponent made of iron powder is considered in this work. The finite element simulation of the crack propagation indicates
that shear crack grows during the compaction process and propagates in the direction of higher shear stress and higher
relative density. This also implies that the crack grows in the direction where the compaction pressure is much higher,
which is in line with the conclusion made by previous researchers on shear crack growth in materials under compression.
In agreement with reported work by previous researchers, high stress concentration and high density gradient at the inner
corner in multi-level component results in fracture of the component during preparation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Powder metallurgy (PM) is widely applied to produce mainly automotive parts such as bearings, cams, and
toothed components. Manufacturing parts using PM involves four major steps: powder and lubricant mixing,
compacting powders into appropriate shapes in closed dies to produce green compacts, sintering the green
compacts at elevated temperature and finally, post-sintering secondary operations (Chtourou et al., 2002;
Mori et al., 1999).

In modelling the compaction process, the macro-mechanical modelling approach is used in this work,
which provides information on the macroscopic behaviour of the powder assembly such as powder movement,
density distribution, stress state and the shape of the compact during and after compaction. Thus the powder
medium is considered as a continuum that undergoes large elastic—plastic deformation. In order to describe
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the effect of loading state on the response of the powder, constitutive model based on granular material is used
since it was found in the literature that powder behaves similarly to a frictional granular material with regard
to dilatancy and densification behaviour (Gollion et al., 1989). Details on cold compaction process can be
found in Ariffin and Thsan (1995), where the numerical modelling of the compaction, relaxation, ejection
and emergence phases have been developed, and validated by experiments.

Based on the loading condition imposed on the powder material in a closed die, an extensive review on
materials under compression is needed to determine the type of fracture that will most likely occur during
the powder compaction process. The research reported in the literature has mainly focused on mode I fracture
since experimental observations indicate that crack usually grows under pure opening mode before crack
growth under mixed-mode or pure shear mode conditions. Even under pure shear loading, a crack generally
grows under mode I due to the local tensile stresses at the crack tip. However, some researchers Melin (1986,
1987), De Bremaecker and Ferris (2004), Isaksson and Stahle (2002), Otsuka and Aoyama (1993), Liu (1974),
Hallback (1998), Arun Roy et al. (1999) and Isaksson and Stahle (2003) have reported that crack grows under
mode II condition when the confining pressure or compressive load is substantially high. In addition, the crack
propagation pattern (or direction) generally depends on this confining pressure, or compressive load.

Experimental and numerical simulation results on crack growth in brittle materials (Melin, 1986, 1987; De
Bremaecker and Ferris, 2004; Isaksson and Stahle, 2002) and ductile materials (Otsuka and Aoyama, 1993;
Liu, 1974; Hallback, 1998; Arun Roy et al., 1999; Isaksson and Stahle, 2003) under compression indicate
the same trend of crack propagation. Generally, crack can grow in three different manners:

1) under low pressure, crack grows via incipient kink by opening mode, at an angle from the original crack
plane,

i) under increasing pressure, crack grows as a combination of open (mode I) and shear (mode II) crack,

il) under substantially high pressure, crack grows as a shear (mode II) crack, straight ahead or at a small
angle from the original crack plane.

In all the referred experiments, a systematic examination of the influence of friction between the crack sur-
faces has not been analysed. However, Isaksson and Stahle (2003) in their analysis and computations have
verified that apart from a high hydrostatic pressure, high friction between crack surfaces will suppress opening
mode crack growth. At a sub-critical hydrostatic pressure or with lower friction between the crack surfaces,
the crack can grows via a kink subjected to opening mode. The direction of the kink with respect to the ori-
ginal crack plane decreases with increasing pressure or increasing friction.

In granular materials like metal powder, the cohesive frictional behaviour of the material and inhomegene-
ity within the powder compact will have a significant influence on the type of fracture. Failure of metal powder
during compaction has always been related to the shearing and friction behaviour of the material, where
the yield criteria of powder material model have been developed based on soil mechanics material model
(Chtourou et al., 2002; Ariffin and Thsan, 1995). Therefore, it is believed that fracture in metal powder com-
paction most likely will be due to shear fracture, rather than opening fracture due to the mechanical behaviour
of powder material in closed die compaction.

Unfortunately, to date there is no published materials on crack growth in soil mechanics for granular mate-
rials like sands or clays under compression, which might represent similar fracture behaviour as in metal
powder. However, research on granular materials under compression has been carried out in rock mechanics
(Yuet al., 2002; Rao et al., 2003; Bobet, 2000), which also shows a similar trend of crack propagation as men-
tioned above for fully dense brittle and ductile materials. Rocks can become more ductile when exposed to
large confining pressure, where the stress—strain curve plotted from data derived from compression test on
a rock sample as shown in Fig. 1 (Cal Poly Pomona, 2000) shows a similar behaviour to ductile materials.
As the sample deforms, it passes through three different types of behaviours: elastic, ductile, and finally brittle
failure, where cohesion is lost between the components of the rock.

Numerical simulations on powder compaction which focused on the stress and density distributions is
insufficient in order to produce a crack free component since cracks are still formed in some green compo-
nents, where methods for crack detection in green PM parts (Eric et al., 2003; Frederick, 2003) exist. The
cracks in green parts are formed because either interparticle bonds are not formed or the interparticle bonds
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Fig. 1. Stress—strain behaviour of rock in compression.

become broken (Zenger and Cai, 1997). Due to the cohesive frictional behaviour of granular materials in com-
pression, it is assumed in this work that it is possible for metal powder to undergo brittle failure when cohesion
is lost between powder particles during the compaction process, as in rock materials under compression. Fur-
thermore, from the three point bending test on iron powder compact by Poquillon et al. (2002), it was
observed that fracture results from particle separation, where there is no difference in the fracture surface sub-
mitted to compression and the fracture surface submitted to tensile stress.

In this paper, a suitable fracture criterion for metal powder during cold compaction process is outlined,
taking into accounts the mechanical behaviour of metal powder under compaction process. A displacement
based finite element procedures has been developed to simulate the powder compaction and fracture process.
Mohr—Coulomb yield criterion is used in this work, and FORTRAN programming language is utilised in
developing the finite element procedures. An adaptive finite element mesh with error estimator based on stress
error norm is used, while crack is modelled to propagate inter-element using the node release mechanism. Six
nodes isoparametric elements are used as interface elements for friction between the powder material and the
die wall during the compaction process, as well as to model friction on the crack faces in contact. This work
aims to provide a preliminary assessment on fracture in metal powder compaction where further development
can be carried out based on qualitative analysis of the simulation results presented in this paper.

2. Fracture criteria

Even though it is believed that failure in metal powder compaction is due to shear fracture (mode II), the
fracture criterion in need must not neglect the possibility of fracture due to opening mode (mode I). Classical
mixed mode fracture criteria have always been used to find the crack initiation angle (or direction) where crack
extension depends on a specific fracture parameter. However, analysis by Rao et al. (2003) based on three
basic criteria, namely the maximum circumferential stress criterion (gy-criterion) (Erdogan and Sih, 1963),
the maximum strain energy release rate criterion (G-criterion) (Palaniswamy et al., 1972) and the minimum
strain energy density criterion (S-criterion) (Sih, 1974), reveals that these criteria fail to predict the occurrence
of mode II fracture even when pure shear load is applied. The crack initiation angle obtained from all three
criteria is between —70° and —80° from the original crack plane when pure shear load is applied, while the true
mode II crack should be in the direction of the maximum shear stress intensity factor, that is in the original
crack plane (0°) or at a small angle from the original crack plane. In other words, the analysis proved that a
more robust fracture criterion is needed to predict the occurrence of mode II crack.

Therefore, based on the examination of mode I and mode II stress intensity factors on the arbitrary plane 6
based on the stress components near a crack tip as in Fig. 2, Ki(0) and Kp(60), varying with 6 (—180° <
0 < +180°), no matter what kind of loading condition is applied, the fracture criterion (Rao et al., 2003) stated
that for mode I fracture to occur:

Kl max < Kinc
9
KI max KIC

1< Kv]maX :KIC at HIC (1)
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Fig. 2. Stress component at a point near a crack tip in the polar coordinate system.

For mode II fracture:

KIImax S KIIC
Kl max KIC ’
where Kjnax and Kjjmax are the maximum stress intensity factors of mode I and mode II, respectively, while

Kic and K¢ are the critical stress intensity factors of mode I and mode II. Details on calculation of stress
intensity factors in the finite element model will be explained in the next section.

Kiimax = Kne  at Onc (2)

3. Finite element modelling of fracture in powder compact
3.1. Calculation of stress intensity factor (SIF)

In order to determine Kj.x and Kjjmax in Egs. (1) and (2), mode I and mode II stress intensity factors in
the 0 direction are defined as (Rao et al., 2003):

0 .0 0
Ki(0) = K cos® 3 + K1 <— 51n§cos2 f) 3)
.0 0 0 .0
K (0) =K smzcoszz + Kn cosz (1 — 3sin’ 5) )

The crack initiation angles 0;c and 0Oyyc, at which Ky(0) and Kyi(0) reach the maximum Kj . and Kipmax can be
deduced from:

0K,(0) . Ki(0)

50 = e <0 (5)
oKu(0) . OKu(0)

0 " ar O ©

Alternatively, Kj(0) and Kjy(0) are calculated on the mid nodes around the crack tip as shown in Fig. 3 to ob-
tain the maximum Kj ., and Kipmax, Where 6 is defined as positive in the anticlockwise direction from the
original crack plane.

K7 and Ky in Eqgs. (3) and (4) are the stress intensity factors in the original crack plane. In finite element
method, these values can be calculated using the displacement correlation technique (Phan et al., 2003) as below:

K- @(4@, ) _%) (7)

Ku= K——G|—1 ZL—n<4(ub —uy) — w> (8)
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Fig. 3. Nodes around the crack tip for calculation of the stress intensity factors.

where G is the shear modulus, L is the element length, x is defined as x = (3 — 4v) for plane strain or axisym-
metric problem, where v is the Poisson’s ratio. The u and v are the displacement components in x and y direc-
tions, respectively, where the subscripts indicate their positions as shown in Fig. 3.

3.2. Adaptive mesh and crack mechanism

An adaptive finite element mesh is applied to accommodate large displacement changes in geometry of the
domain. Error estimator based on stress error norm (Zienkiewicz and Zhu, 1989) is used, where automatic
remeshing is calculated at each step during the compaction process. Crack initiation and propagation have
been developed and implemented in the model, without having to predefine the direction of crack. Initially,
a three nodes triangle element is used. After the first stage of remeshing, the three nodes elements are auto-
matically converted into six nodes triangle elements.

In finite element modelling using advanced remeshing technique, crack propagation can be modelled by
inter-element or intra-element in the mesh (Bouchard et al., 2000). Since the values of Ki(6) and Kyy(6) are cal-
culated on the nodes around the tip, crack is modelled to propagate inter-element, while the node release
mechanism (Bouchard et al., 2000) is used to provide two adjacent crack faces when the criteria is fulfilled.
Using an adaptive mesh, the maximum and minimum element size can always be chosen such that the smallest
element will be generated around the crack tip. As crack propagates, elements with appropriate size are gen-
erated around the crack tip, while the mid node of an element will become a new crack tip in order to ensure
that the crack extension is within the process zone.

3.3. Friction criteria

When two surfaces are in contact, a criteria defining tangential stick or slip occurrence is needed. In general,
friction criteria between two surfaces can be stated as

Frina) = {

<0 stick

9
=0 slip 9)

Coulomb friction law which is often adopted in friction problems is used in this work, and is given by
Fy(t,00) =[ 7 | +poy (10)

where 7 is the friction shear stress, o is the normal stress which should be compressive for friction to devel-
oped, and u is the coefficient of friction.

Six nodes isoparametric elements are used as interface elements for friction between the powder material
and the die wall during the compaction process. Details on the constitutive model of friction based on analogy
with plasticity which is incorporated into the interface elements, can be found in Ariffin and Thsan (1995). The
interface elements are also used to model friction on the crack faces in contact. Using an adaptive finite ele-
ment mesh, the interface element can be inserted automatically on the crack faces, whenever a crack starts and
Srows.
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3.4. Geometry and boundary conditions of finite element model

A multi-level component, in this case a rotational flanged component, is modelled by an axisymmetric rep-
resentation as shown in Figs. 4 and 5. Iron powder with material properties obtained from experimental work
in Aidah (2001) as listed in Table 1, is compacted by bottom and top punch movements. Total displacement of
the bottom punch, d, = 7.69 mm while the top punch displacement, d;, = 6.06 mm at the end of compaction
process. In this work, the compaction is performed in 20 steps movement of bottom and top punch, respec-
tively, and in turn as shown in Fig. 5. This mean that a total displacement of 7.69 mm is first achieved when
the bottom punch had finished a 20 steps movement (step 1-20), followed by a total displacement of 6.06 mm
by the top punch after a 20 steps movement (step 21-40).

3.5. Fracture toughness

The fracture criterion in Egs. (1) and (2) require values of the critical stress intensity factors, Kijc and Kjjc
which are the material parameters and also called fracture toughness. Standard procedures exist for determi-
nation of fracture toughness for solids, such as three point bending test or four point bending test. However,
the fracture toughness of the powder compact during the compaction process is not as simple as fully dense
solids due to continuous rapid change of density and other material properties at each compaction step. Hence

r=6.3mi
—>]

1
46mm 156 mm
I

Top punch

13.7mm

/" ~—"
Bottom punch ' \
Corerod

Fig. 4. Geometry and boundary conditions of a rotational flanged component.

(b) (c)

Fig. 5. Axisymmetric representation of compaction process with tool path and position during compaction process. (a) Step 1 begins, (b)
end of step 20 and (c) end of step 40.
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Table 1
Material properties of iron powder

Material properties

Young’s modulus, E 40 MPa
Poisson ratio, v 0.35
Cohesion, C 2.5
Angle of internal friction, ¢ 33
Coulomb’s friction coefficient, u 0.3332
Initial relative density, pj, 0.327

variation of fracture toughness with relative density must be obtained in order to provide these fracture
parameters as compaction proceeds.

3.5.1. Mode I fracture toughness (Kjc)

Investigation on mechanical properties of iron compact has been carried out by Poquillon et al. (2002), who
includes an analysis on different theoretical models to estimate variation of Young’s modulus with relative
density of the iron compact. In their work, the result obtained by assuming that green compacts behave as
foam metal using the formulas given in Gibson and Ashby (1988) is comparable to the result obtained using
the widely used assumption that green compacts behave as porous material. A detailed study on mechanical
properties of foam is provided in Gibson and Ashby (1988) that includes approximate formulas for mode I
fracture toughness (Kjc).

Therefore as a first approximation, the green compact is assumed to behave as foam metal in this work.
Based on approximate formulas for mode I fracture toughness (K;c) (Gibson and Ashby, 1988) and by assum-
ing that the crack is parallel to one of the principal material axes, Kjc can be estimated in the finite element
simulation using the following formula (Choi and Sankar, 2003):

(11)

where oyg is the strength of the material and o,,,4 is the maximum principal stress.

Three point bending tests have been performed on iron compacts by Poquillon et al. (2002), where a num-
ber of samples with different final relative densities have been tested to provide the variation of green strength
with relative density. A uniaxial press was used in the compaction process to produce the samples of iron com-
pact and to analyse the densification behaviour of iron powder with different morphology (Poquillon et al.,
2002). The effect of particle size and shape on the green strength is complex, but many studies carried out
on metal powder compact green strength show that the green strength is a linear function of compaction pres-
sure in a large range of relative density (Poquillon et al., 2002). Based on the densification behaviour of iron
powder under uniaxial compaction by Poquillon et al. (2002) and Aidah (2001), as a first approximation in esti-
mating Kjc, the variation of green strength with relative density obtained in Poquillon et al. (2002) as shown in
Fig. 6 is used in this work. Using the variation of the green strength in Fig. 6, Eq. (11) hence becomes:

_ 148.66p" — 65.627

o-max

IC (12)
where p’ is the relative density of the iron compact with respect to the solid iron, and 6,4 is the maximum
principal stress as in Eq. (12).

3.5.2. Mode II fracture toughness (Kpc)

The fracture toughness of a material is basically the amount of energy a material can absorb before frac-
ture, or energy required to create new crack surfaces. Thus it is also equal to the area under the stress—strain
curve up to fracture. Experimental data from shear box testing by Aidah (2001) is used in this work to obtain
the shear stress—strain curves for samples of iron powder compact with different final compaction load (differ-
ent final relative densities) as shown in Fig. 7. These curves are subsequently used to estimate the variation of
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mode II fracture toughness (Kpc) with relative density, as depicted in Fig. 8. From Fig. 8, the values of Kyc as
compaction proceeds can be obtained from:
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Kye = 0.1174e%551 (13)

where p’ is the relative density of iron compact as in Eq. (12). Since the crack is predicted to follow the direc-
tion of Kjrnax, the relative density at the point with maximum Kyy(6) around the crack tip is used in the cal-
culation of both Kjc and Kiyjc.

4. Results and discussion
4.1. Crack initiation

Since no pre-crack is present in this case, the direction of maximum shear stress is used as the original crack
direction, in the calculation of Kj(0) and Kyy(6) for the first crack formation. This is acceptable because the
same conclusions regarding the crack path are achieved in materials under compression, by assuming that
crack grows along the plane of maximum shear stress as by assuming that crack follows the direction of max-
imum Kjy (Isaksson and Stahle, 2003). Without pre-crack in this work, the point with maximum shear stress is
taken as the point where the crack starts.

A single crack propagating inward from the boundary surface is considered in this work. It is found that the
point with the maximum shear stress is always generated around the sharp corner as shown in Fig. 9. Shear
crack starts at the end of compaction step 9, and the shear stress distributions as well as the relative density
distributions at step 10 are shown in Figs. 9 and 10, respectively. These two figures indicate that crack starts in
the region with high shear stress but low relative density.

4.2. Crack propagation
As compaction proceeds, the crack propagates as shear crack at step 17, 18 and 20, where the crack prop-

agation directions, 0 at these steps are shown in Table 2. No further propagation occurs after step 20, until
compaction is completed at step 40.
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=3123E+00 - -2573E+00

-3673E+00 - -3.123E+00

-4.224E+00 - -3673E+00
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-SB7SE+00 - -S.324E+00
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Fig. 9. Shear stress distribution at step 10.
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time=10
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Fig. 10. Relative density distribution at step 10.

Table 2

Crack propagation direction

Compaction step 0°

17 +22.7883
18 +5.34889
20 +13.74237

The value of 0 is calculated with respect to the earlier crack direction and defined as positive in anticlock-
wise direction. These values of 0 as listed in Table 2 show that the crack always extended away from the ori-
ginal crack direction and the crack propagation direction is relatively small compared to crack propagation
direction reported in Liu (1974), Hallback (1998), Arun Roy et al. (1999), Isaksson and Stahle (2003) when
crack extended via a kink by opening mode in materials under compression.

The shear stress distributions and relative density distributions at step 21 are shown in Figs. 11 and 12,
respectively. Due to the small angle of propagation direction, a smooth curve of crack propagation is formed
at the inner corner, showing the behaviour of shear crack growth. Neglecting the sign convention that indi-
cates the direction of stresses, it can be seen from Fig. 11 that the crack propagates towards the region with
higher shear stresses. Fig. 12 shows that the crack also propagates in the direction where the relative density is
much higher. Since relative density increases as compaction pressure increases (Aidah, 2001; Poquillon et al.,
2002), it can be deduced that the crack grows in the direction of higher compaction pressure. This is in line
with the conclusion made by Arun Roy et al. (1999) arguing that crack grows in the direction of higher con-
fining hydrostatic pressure, which is equivalent to the compaction pressure in this case.

Due to the movement of the bottom punch in the first 20 steps, the two regions with the highest and lowest
relative density are formed around the inner corner as shown in Fig. 12. The relative density or compaction
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Fig. 11. Shear stress distribution at step 21.
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Fig. 12. Relative density distribution at step 21.

pressure gradient around the sharp corner causes the crack to propagate in such direction as in Fig. 12. Fur-
thermore, the shear stresses which are initially higher at the boundary as shown in Fig. 9 become much lower
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as compaction proceeds, while the region with higher shear stresses is formed slightly centred, at the inner cor-
ner as in Fig. 11. As the consequence, the crack propagates inward starting from the boundary, towards the
region where the shear stresses are much higher. This is in agreement with reported fracture in multi-level com-
ponent during preparation, expected to be caused by high stress concentration and high density gradient at
inner corner (Mori et al., 1999; Oliver et al., 1996; Chtourou et al., 2002).

4.3. Example of fracture in metal powder compaction

To date the in situ observation on fracture during the compaction process is unattainable, where the cause
of fracture is usually predicted based on the fractured part of the ejected green component (Mori et al., 1999;
Chtourou et al., 2002). Even though it is of high interest to actually observe the fracture during the powder
compaction process of engineering multi-level component which usually fracture near the inner corner, a sim-
ple component is produced in this work to provide an example of fracture in iron powder compact. This is
due to limited available tools currently in the authors’ laboratory to produce a real engineering multi-level

Top punch

Bottom punch

Fig. 13. Initial geometry and boundary condition of a simple component.

Fig. 14. Fracture at inner corner of a simple component.
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Fig. 15. Shear stress distribution at step 6.

component. Initial geometry and boundary condition of the component is shown in Fig. 13. Compaction is
performed by downward movement of the top punch until a displacement of 10 mm is achieved, followed
by upward movement of the bottom punch until a displacement of 9 mm is achieved. The final dimension
of the component is as shown in Fig. 14, where it can be seen that fracture occurs in the lower region of
the component, resulting in undesirable shape of the component.

Finite element simulation of the compaction process for this simple component is carried out for compar-
ison purposes. Compaction by the movement of top and bottom punches is performed in 20 steps movement,
respectively, similar to the simulation performed in Section 3.4 except that the top punch move first, followed
by the bottom punch movement. For this component, simulation shows that crack starts at the end of step 5,
where the shear stress and relative density distribution at step 6 are shown in Figs. 15 and 16, respectively.
From these two figures, crack starts at inner corner of the component due to high shear stress concentration
and high density gradient, as in the results of simulation presented in Section 4.1. However, crack does not
propagate until the simulation of the compaction process is completed at step 40.

Comparing the results of simulation with the fracture in the component as shown in Fig. 14, it is believed
that crack starts at the inner corner and causes the lower region of the component to fracture during ejection
of the component from the die. Since effect of ejection on crack growth in the compact has not been analysed
in this work, comparison can only be made on the point of fracture. Both simulation and experimentally pro-
duced component shows that fracture occur at the inner corner of the component resulting in a serious dam-
age to the component.
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Fig. 16. Relative density distribution at step 6.

5. Conclusion

A displacement based finite element model has been developed to simulate the crack initiation and prop-
agation in a rotational flanged component made of iron powder. A fracture criterion based on fracture of
granular materials in compression has been successfully used to model the crack propagation process. Simu-
lation of the crack propagation process in the iron compact shows that shear crack starts in the region with the
highest shear stress and the lowest relative density distributions. As compaction proceeds, the crack propa-
gates in shear mode in the direction where the shear stress and the relative density are much higher. Propa-
gation of the crack towards the region of much higher relative density distribution also implies that the
crack grows in the direction of higher compaction pressure, which is in line with the conclusion made by pre-
vious researchers on crack growth in materials under compression.

In addition, simulation of crack growth at inner corner in multi-level component due to high stress concen-
tration and high density gradient around the corner is indeed in line with reported fracture in multi-level com-
ponent during preparation by previous researchers. This useful preliminary assessment on fracture behaviour
in metal powder during the compaction process can be further developed for prediction of crack growth in
multi-level components with more complex geometrical shape and by using more accurate material fracture
parameters.
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